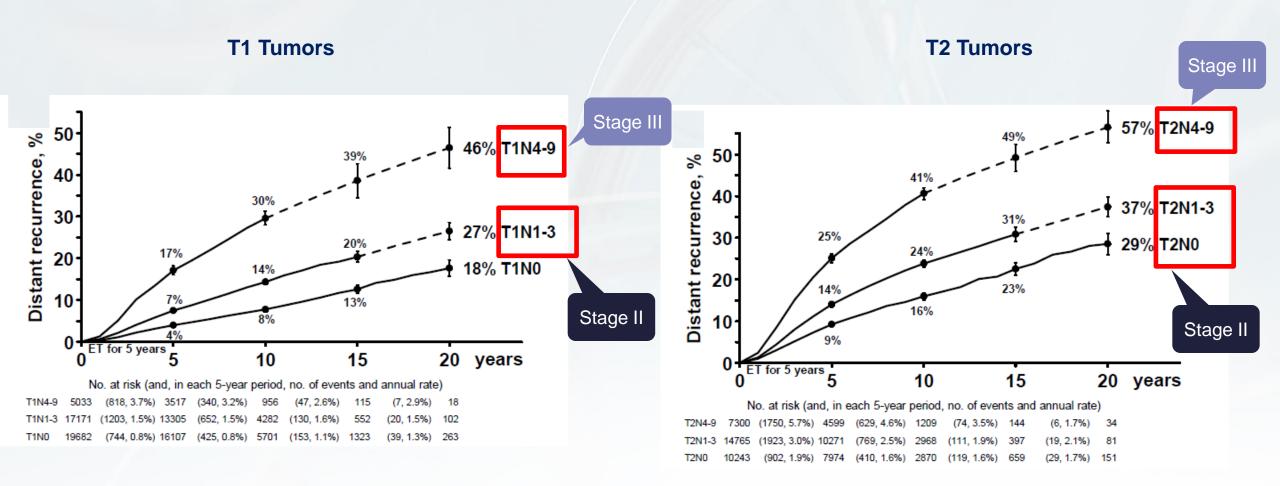
XXIII JORNADA DE REVISIÓN DEL CONCIENCIÓN DE AMERICANO DE ONCOLOGÍA

Cáncer de mama precoz Sonia Pernas, MD, PhD Institut Catala d'Oncologia L'Hospitalet

23 de junio de 2023

Disclosures


- Advisor/Consultant: AstraZeneca-Daiichi; Gebro; Pfizer; Pierre-Fabre; SeaGen
- Speaker honoraria: AstraZeneca-Daiichi; Eisai; Gilead; Lilly; Novartis; Roche;
- Travel Grants from AstraZeneca-Daiichi; Pfizer; Gilead
- Grant/Research funding to the Institution: Roche
- Non-financial disclosure: member of the SOLTI Executive Board and Scientific Committee

Outline

- #LBA500: Ribociclib and endocrine therapy as adjuvant treatment in patients with HR+/HER2– early breast cancer: Primary results from the phase III NATALEE trial. D Slamon, et al.
- #501 Efficacy and safety results by age in monarchE: Adjuvant abemaciclib combined with endocrine therapy (ET) in patients with HR+, HER2-, node-positive, high-risk early breast cancer (EBC). E Hamilton, et al.
- #503 Effects of ovarian ablation or suppression on breast cancer recurrence and survival: Patient-level meta-analysis of 14,993 pre-menopausal women in 25 randomized trials. Richard G. Gray et al.
- **#LBA506** 3-year invasive disease-free survival (iDFS) of the strategy-based, randomized phase II **PHERGain** trial evaluating chemotherapy (CT) de-escalation in human epidermal growth factor receptor 2-positive (HER2[+]) early breast cancer (EBC). Javier Cortes et al.
- #LBA637 Nine-weeks versus one-year trastuzumab for early-stage HER2+ breast cancer: 10-year update of the Short-HER phase III randomized trial. PF Conte et al.
- #510 Prognosis and trends in chemotherapy use for patients with stage IA triple-negative breast cancer (TNBC): A population-based study. P Tarantino et al

Risk of recurrence in patients with HR+ early-BC treated with adjuvant ET

Pan H, et al. N Engl J Med. 2017;377:1836-1846

Real world clinical outcomes in stage II and III HR+/HER2- EBC after initiation of ET

- Retrospective analysis of ConcertAl'sde-identified electronic medical records dataset among pts treated at US academic and community oncology clinics from January 1, 1995 to April 30, 2021
- Stage II BC was 4x' as common as stage III and had a 41% risk of invasive disease recurrence within 10 years of starting adjuvant ET

Population	2-Year Event Risk (95% CI), %	3-Year Event Risk (95% CI), %	5-Year Event Risk (95% CI), %	10-Year Event Risk (95% CI), %
Overall (N = 3133)	11.1 (10.1-12.3)	16.3 (15.0-17.7)	26.1 (24.5-27.9)	45.0 (42.7-47.3)
Stage II (n = 2535)	9.4 (8.3-10.7)	13.8 (12.4-15.2)	22.7 (21.0-24.6)	40.5 (38.0-43.1)
Stage III (n = 598)	18.4 (15.5-21.8)	27.1 (23.6-31.0)	40.4 (36.2-44.9)	62.9 (57.9-67.9)

O'Shaughnessy et al, SABCS 2022

Ribociclib and endocrine therapy as adjuvant treatment in patients with HR+/HER2- early breast cancer: primary results from the Phase III NATALEE trial

Dennis Slamon,¹ Daniil Stroyakovskiy,² Denise A. Yardley,³ Chiun-Sheng Huang,⁴ Peter A. Fasching,⁵ John Crown,⁶ Aditya Bardia,⁷ Stephen Chia,⁸ Seock-Ah Im,⁹ Miguel Martin,¹⁰ Sherene Loi,¹¹ Binghe Xu,¹² Sara Hurvitz,¹³ Carlos Barrios,¹⁴ Michael Untch,¹⁵ Rebecca Moroose,¹⁶ Frances Visco,¹⁷ Rodrigo Fresco,¹⁸ Tetiana Taran,¹⁹ Gabriel N. Hortobagyi²⁰

¹David Geffen School of Medicine at UCLA, Los Angeles, CA; ²Moscow City Oncology Hospital No. 62 of Moscow Healthcare Department, Moscow Oblast, Russia; ³Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN; ⁴National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei City, Taiwan; ⁵University Hospital Erlangen Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; ⁶St. Vincent's University Hospital, Dublin, Ireland; ⁷Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA; ⁸British Columbia Cancer Agency, Vancouver, BC, Canada; ⁹Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; ¹⁰Instituto de Investigación Sanitaria Gregorio Marañon, Centro de Investigación Biomédica en Red de Cáncer, Grupo Español de Investigación en Cáncer de Mama, Universidad Complutense, Madrid, Spain; ¹¹Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ¹²Department of Medical Oncology Cancer Hospital, Chinese Academy of Medical Sciences (CAMS), and Peking Union Medical College (PUMC), Beijing, China; ¹³University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA; ¹⁴Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil; ¹⁵Interdisciplinary Breast Cancer Center, Helios Klinikum Berlin-Buch, Berlin, Germany; ¹⁶Orlando Health Cancer Institute, Orlando, FL; ¹⁷National Breast Cancer Coalition, Washington DC; ¹⁸TRIO - Translational Research in Oncology, Montevideo, Uruguay; ¹⁹Novartis Pharma AG, Basel, Switzerland; ²⁰Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX

2023 ASCO ANNUAL MEETING #ASCO23

PRESENTED BY: Dennis Slamon MD, PhD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

NATALEE study design^{1,2}

Geographic location: North America/Western Europe/Oceania vs rest of world

2023 ASCO

ANNUAL MEETIN

 Adult patients with HR+/HER2- EBC How much Ribociclib Prior ET allowed up to 12 mo 400 mg/day **Primary End Point** Anatomical stage IIA^a 3 weeks on/1 week off • NO with: for 3 y · Grade 2 and evidence of high risk: Who Secondary End Points NSAL Ki-67 ≥ 20% Oncotype DX Breast Recurrence Score ≥ 26 or Letrozole or R 1:1° High risk via genomic risk profiling anastrozole^d for \geq 5 y Grade 3 + goserelin in men • N1 and premenopausal Anatomical stage IIB^a women N0 or N1 Anatomical stage III NSAI N0, N1, N2, or N3 Letrozole or $N = 5101^{b}$ anastrozole^d for \geq 5 y Randomization stratification + goserelin in men Anatomical stage: || vs ||| and premenopausal Menopausal status: men and premenopausal women vs postmenopausal women women Receipt of prior (neo)adjuvant chemotherapy: yes vs no

Recurrence-free survival Distant disease-free survival OS PROs Safety and tolerability PK **Exploratory End Points** Locoregional recurrence-free survival

> Gene expression and alterations in tumor ctDNA/ctRNA samples

iDFS using STEEP criteria

a Enrollment of patients with stage II disease was capped at 40%. b 5101 patients were randomized from 10 Jan 2019 to 20 April 2021. Open-label design. d Per investigator choice. CT, chemotherapy; ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PAM50,

prediction analysis of microarray 50; PK, pharmacokinetics; PRO, patient reported outcome; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials.

1. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03701334. Accessed April 6 2023. 2. Slamon DJ, et al. J Clin Oncol. 2019;37(15 suppl) [abstract TPS597]

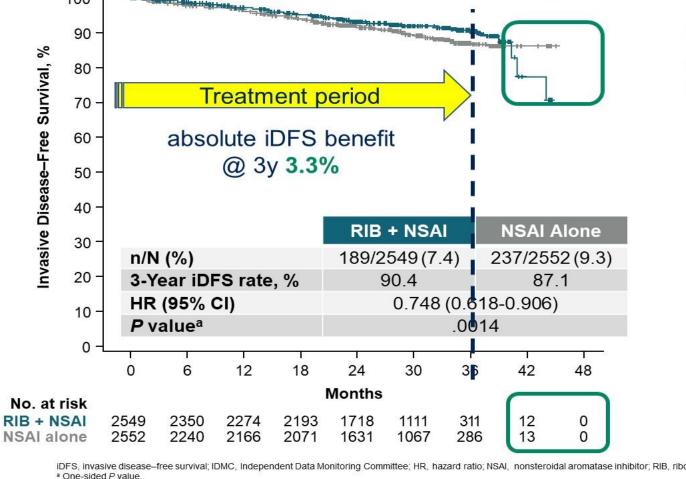
PRESENTED BY: Dennis Slamon MD, PhD #ASCO23 Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Baseline characteristics

Parameter	RIB + NSAI	NSAI Alone	All Patients
	n = 2549	n = 2552	N = 5101
Age, median (min-max), years	52 (24-90)	52 (24-89)	52 (24-90)
Menopausal status, n (%)			
Men ^a and premenopausal women	1126 (44)	1132 (44)	2258 (44)
Postmenopausal women	1423 (56)	1420 (56)	2843 (56)
Anatomical stage, ^{b,c} n (%)			
Stage IIA	479 (19)	521 (20)	1000 (20)
Stage IIB	532 (21)	513 (20)	1045 (20)
Stage III	1528 (60)	1512 (59)	3040 (60)
Nodal status at diagnosis, n (%)			
NX	272 (11)	264 (10)	536 (11)
NO	694 (27)	737 (29)	1431 (28)
N1	1050 (41)	1049 (41)	2099 (41)
N2/N3	483 (19)	467 (18)	950 (19)
Prior ET, n (%) ^d			
Yes	1824 (72)	1801 (71)	3625 (71)
Prior (neo)adjuvant CT, n (%)			
Yes	2249 (88)	2245 (88)	4494 (88)
ECOG PS, n (%)			
0	2106 (83)	2132 (84)	4238 (83)
1	440 (17)	418 (16)	858 (17)

CT, chemotherapy; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; N0, no nodal involvement; N1, 1-3 axillary lymph nodes; N2, 4-9 axillary lymph nodes; N3, \geq 10 axillary lymph nodes or infra- or supraclavicular lymph nodes; NSAI, nonsteroidal aromatase inhibitor; NX, regional nodes were not assessed; OFS, ovarian function suppression; RIB, ribociclib.

* In the RIB + NSAI arm, there were 11 men (0.4%); in the NSAI alone arm, there were 9 men (0.4%). ^b A total of 14 patients with stage I disease were included: 9 (0.4%) in the RIB + NSAI arm and 5 (0.2%) in the NSAI alone arm. ^c Stage is derived using TNM from surgery for patients having not received (neo)adjuvant treatment or as worst stage derived using TNM at diagnosis and TNM from surgery for patients having received (neo)adjuvant treatment. ^d Prior OFS was received by 670 patients (26.3%) in the RIB + NSAI arm and 620 (24.3%) in the NSAI alone arm.


#ASCO23

PRESENTED BY: Dennis Slamon MD, PhD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

NATALEE: Ribociclib achieved highly significant iDFS benefit (median follow-up 27.7 months)

Patients who completed ribociclib

2 years (including ongoing)	1449 (57)
3 years	515 (20)

iDFS benefit consistent across key subgroups

Subgroup	RIB + NSAI n = 2549	NSAI Alone n = 2552		HR	(95% CI)
Menopausal status					
Men and premenopausal women	71/1126	93/1132	H-8	0.722	(0.530-0.983
Postmenopausal women	118/1423	144/1420		0.781	(0.613-0.997
AJCC stage					A CONTRACTOR OF THE OWNER
Stage II	49/1011	65/1034		0.761	(0.525-1.103
Stage III	140/1528	172/1512		0.740	(0.592-0.92
Prior CT					
Neoadjuvant	111/1085	132/1095	H	0.785	(0.610-1.01
Adjuvant	63/1223	89/1220	Here I	0.671	(0.486-0.92
Prior ET			1		
Yes	127/1824	157/1801		0.756	(0.598-0.95
No	62/725	80/751		0.774	(0.556-1.07
Region					
North America/Western Europe/Oceania	111/1563	139/1565	H	0.759	(0.591-0.97
Rest of world	78/986	98/987		0.757	(0.562-1.01
Histological grade at time of surgery					
Grade 1	9/213	12/217		0.778	(0.328-1.84
Grade 2	102/1460	125/1432		0.749	(0.577-0.97
Grade 3	61/684	78/702		0.776	(0.555-1.08
Ki-67 status ^a					
Ki-67 ≤ 20%	76/1199	95/1236	++++	0.801	(0.593-1.08
Ki-67 > 20%	82/920	105/938		0.746	(0.559-0.99
Nodal status ^{b,c}			1		A. 7
NO	16/285	28/328		0.630	(0.341-1.16
N1-N3	173/2261	208/2219	He-I	0.771	(0.630-0.94

0.0 0.5 1.0 1.5 2.0 2 Hazard Ratio

> ASCO AMERICAN SOCIETY OF CLINICAL ONCOLOGY

PRESENTED BY: Dennis Slamon MD, PhD

2023 ASCO

ANNUAL MEETING

#ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

NATALEE: Ribociclib at 400-mg dose was safe and well tolerated

	RIB + n = 2	NSAI 2524	NSAI Alone n = 2444		
AESIs, %	Any Grade	Grade ≥ 3	Any Grade	Grade ≥ 3	
Neutropeniaª	62.1	43.8	4.5	0.8	
Febrile neutropenia	0.3	0.3	0	0	
Liver-related AEs ^b	25.4	8.3	10.6	1.5	
QT interval prolongation	5.2	1.0	1.2	0.5	
ECG QT prolonged	4.2	0.2	0.7	0	
ILD pneumonitis ^d	1.5	0	0.8	0.1	
Other clinically relevant AEs,%					
Arthralgia	36.5	1.0	42.5	1.3	
Nausea	23.0	0.2	7.5	0.04	
Headache	22.0	0.4	16.5	0.2	
Fatigue	21.9	0.7	12.7	0.2	
Diarrhea	14.2	0.6	5.4	0.1	
VTE	1.4	0.6	0.6	0.2	

- Most frequent all-grade AEs (RIB + NSAI vs NSAI alone) leading to discontinuation: Liver-related AEs: 8.9% vs 0.1% and Arthralgia: 1.3% vs 1.9%
- Most of RIB AE discontinuations occurred early in treatment: Median time of these discontinuations was 4 months

19% discontinued ribociclib due to AE

- 4% discontinued NSAI in control arm due to AE
- monarchE¹: 6% (180/2794) early discontinuations in abemaciclib arm due to AE
- PenelopeB²: 5% (33/628) early discontinuations in palbociclib arm due to AE

AE, adverse event; AESI, adverse event of special interest; ILD, interstitial lung disease; MedDRA, Medical Dictionary for Regulatory Activities; NSAI, nonsteroidal aromatase inhibitor; RIB, ribociclib

^a This is a grouped term that combines neutropenia and neutrophil count decreased. ^b This is a grouped term that includes all preferred terms identified by standardized MedDRA queries for drug-related hepatic disorders. ^c This is a grouped term. ^d This is a grouped term that includes all preferred terms identified by standardized MedDRA queries for drug-related hepatic disorders. ^c This is a grouped term that includes all preferred terms identified by standardized MedDRA queries for drug-related hepatic disorders. ^c This is a grouped term that includes all preferred terms identified by standardized MedDRA queries for drug-related hepatic disorders. ^c This is a grouped term that includes all preferred terms identified by standardized MedDRA queries for drug-related hepatic disorders. ^c This is a grouped term that includes all preferred terms identified by standardized MedDRA queries for drug-related hepatic disorders. ^c This is a grouped term that includes all preferred terms identified by standardized MedDRA queries for interstitial lung disease.

2023 ASCO ANNUAL MEETING #ASCO23

PRESENTED BY: Dennis Slamon MD, PhD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

¹Johnston et al, Lancet Oncol 2022; ²Loibl et al, JCO 2021.

Harbeck N ASCO 2023, discussant

Efficacy and Safety Results by Age in monarchE: Adjuvant Abemaciclib Combined with Endocrine therapy (ET) in Patients with HR+, HER2-, Node-Positive, High-Risk Early Breast Cancer (EBC).

<u>Erika Hamilton¹</u>, Jee Hyun Kim², Natalja Eigeliene³, Dimitrios Mavroudis⁴, Dragos Mircea Median⁵, Heloisa Marconato⁶, Sergii Shevnya⁷, Ozgur Ozyilkan⁸, Juan Manuel Puig⁹, Catherine Shannon¹⁰, Maria Munoz¹¹, Belen San Antonio¹¹, Ran Wei¹¹, Astra M. Liepa¹¹, Joyce O'Shaughnessy¹², Stephen R. D. Johnston¹³, Valentina Guarneri¹⁴

¹Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee, USA, ²Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea, ³The Wellbeing Services County of Ostrobothnia, Vaasa, Finland, ⁴University General Hospital of Heraklion, Heraklion, Greece, ⁵Spitalul Clinic Filantropia, Bucharest, Romania, ⁶Hospital de Cancer de Londrina, Paraná, Brazil, ⁷Vinnytsia Regional Clinical Oncology Dispensary, Vinnytsia, Ukraine, ⁸Baskent University Faculty of Medicine, Dept. of Medical Oncology, Adana, Turkey, ⁹Centro Polivalente de Asistencia e Inv. Clinica CER-San Juan, San Juan, Argentina, ¹⁰Mater Adult Hospital Brisbane, Brisbane, Australia, ¹¹Eli Lilly and Company, Indianapolis, Indiana, USA, ¹²Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas, USA, ¹³Royal Marsden Hospital, NHS Foundation Trust, London, United Kingdom, ¹⁴University of Padua, Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy

Older Patients had More Comorbidities, Higher Baseline ECOG PS Scores, and Received Less Prior (Neo) Adjuvant Chemotherapy

Baseline factors, %		Overall	<65	≥65
Baseline factors, 70		n=5637	n=4787	n=850
	<20	27	28	23
Pathological tumor size (mm)	20-<50	50	48	57
	≥50	22	22	19
No positivo lumph podost	1-3	40	41	36
No. positive lymph nodes ^a	≥4	60	59	64
	G1	8	8	7
Histopathological grade	G2	49	49	52
	G3	38	38	37
	Yes	94	97	82
Prior (neo) adjuvant chemotherapy	No	6	3	18
	0	85	86	77
ECOG PS ^b	1	15	14	23
Treated patients, %		n=5591	n=4751	n=840
	0	17	19	6
No. pre-existing comorbidities	1-3	48	48	44
	≥4	35	33	51
Initial and a size the second	Aromatase inhibitors	68	64	95
Initial endocrine therapy	Tamoxifen	31	36	5

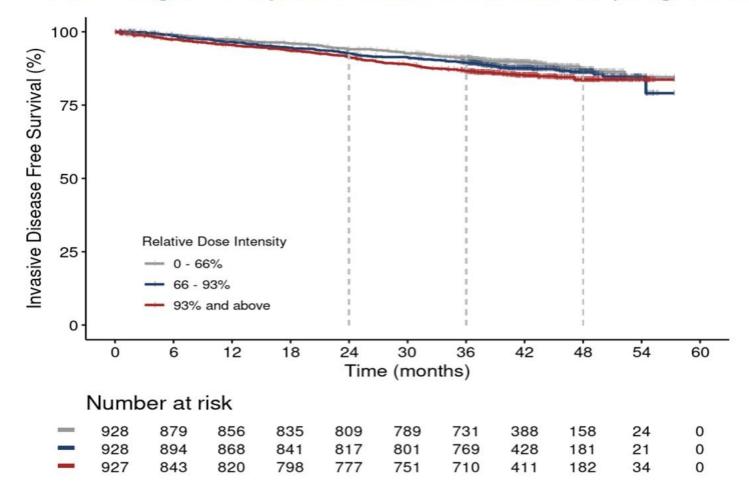
Values that do not add up to 100% are due to rounding or missing data; an=14 patients with 0 positive lymph nodes were inadvertently enrolled; bn=3 patients with an ECOG PS score of >1 were inadvertently enrolled

Older Patients Derived Similar Abemaciclib Benefit to ITT Population

	IDFS			DRFS			
	ІТТ	<65	≥65	ПТ	<65	≥65	
Events/N							
Abemaciclib + ET	336 /2808	270 /2371	66 /437	281 /2808	230 /2371	51 /437	
ET alone	499 /2829	414 /2416	85 /413	421 /2829	353 /2416	68 /413	
HR (95% CI)	0.664 (0.578, 0.762)	0.646 (0.554, 0.753)	0.767 (0.556, 1.059)	0.659 (0.567, 0.767)	0.647 (0.548, 0.764)	0.748 (0.520, 1.077)	
Interaction p-value	NA	0.5	35	NA	0.4	49	
4-year rate, %							
Abemaciclib + ET	85.8	86.5	82.0	88.4	88.8	86.1	
ET alone	79.4	79.8	76.8	82.5	82.6	81.5	
Absolute benefit	6.4	6.7	5.2	5.9	6.2	4.6	

Consistent results were observed in Cohort 1

monarchE: Dose Adjustments were More Common in Older Patients


- Older Patients derive similar benefit (iDFS, DRFS) from abemaciclib as ITT population
- QoL was similar between arms and across age subgroups

	Abemaciclib + ET		ET
	Overall	<65	≥65*
Abemaciclib dose adjustments due to AEs, %	n=2791	n=2361	n=430
Interruptions	62	60	68
Reductions	44	42	55
Discontinuations	18	15	38
Discontinuations without prior dose reductions	10	8	19

*Patients ≥75 years have higher rates of abemaciclib dose adjustments and discontinuations due to AEs

monarchE: Abemaciclib Benefit is Maintained when Dose Modifications are Undertaken to Manage AEs

IDFS according to RDI in patients treated with abemaciclib (all ages included)

- Dose adjustments result in lower relative dose intensity (RDI*). To explore the impact of dose adjustments on abemaciclib efficacy:
 - Patients treated with abemaciclib were classified into 3 equal sized subgroups according to their RDI
 - IDFS rates were estimated within each subgroup
- 4-year IDFS rates were generally consistent (87.1% vs 86.4% vs 83.7% from the lowest RDI group to the highest)
 - Similar findings were observed in Cohort
 1 patients treated with abemaciclib

*RDI is defined as the average daily dose of abemaciclib received over the treatment duration, relative to the full dose (150mg BID)

Comparison of NATALEE and monarchE Populations

AJCC Anatomical Staging ¹	TN (M0)	NATALEE ²	monarchE ³
Stage IIA	T0N1	\checkmark	Only if grade 3 or Ki-67 ≥20%
	T1N1	\checkmark	Only if grade 3 or Ki-67 ≥20%
	T2N0	Only if G3; or G2 with Ki-67 ≥20% or high genomic risk ^a	×
Stage IIB	T2N1	\checkmark	Only if grade 3 or Ki-67 ≥20%
	T3N0		×
Stage IIIA	T0N2		\checkmark
	T1N2	×	\checkmark
	T2N2		\checkmark
	T3N1	\checkmark	\checkmark
	T3N2	\checkmark	\checkmark
Stage IIIB	T4N0		×
	T4N1	\checkmark	Only if tumor size ≥5 cm or grade 3 or Ki-67 ≥20%
	T4N2	\checkmark	\checkmark
Stage IIIC	Any TN3	✓	✓
		NATALEE allowed: • Any N1, N2, N3 • N0: T2 [(G2 + high genomic risk or Ki-67≥ 20%) or G3)], T3, T4	monarchE allowed: • Any N2, N3 • N1 only if G3 or tumor size ≥ 5cm or Ki-67≥20%
a Lligh rick oc	determined by	Oncotype DX/Prosigna/MammaPrint/EndoPredict	N0 not allowed in monarchE

^a High risk as determined by Oncotype DX/Prosigna/MammaPrint/EndoPredict

Slamon D, et al. ASCO 2023. LBA500; Harbeck N, et al. Ann Oncol. 2021;32:1571-1581.

Effects of ovarian ablation or suppression on breast cancer recurrence and survival: patient-level meta-analysis of 14,999 pre-menopausal women in 25 randomized trials

Early Breast Cancer Trialists Collaborative Group (EBCTCG)

Writing Committee: Richard Gray, Rosie Bradley, Jeremy Braybrooke, Mike Clarke, Robert Hills, Richard Peto, Jonas Bergh, Sandra Swain, Rodrigo Arriagada, Judith Bliss, Allan Hackshaw, Hyun-Ah Kim, Woo Chul Noh, John Yarnold, Nancy Davidson, Prudence Francis, Meredith Regan

Randomised trials of ovarian ablation/suppression

27 trials identified (19,222 women randomised)

200 women (2 trials) no data

4,021 women ineligible 1305 postmenopausal 2760 ER-negative (44 postmenopausal)

14,999 women (23 trials*) who were premenopausal at randomisation

*2 trials included only postmenopausal women

2023 ASCO #ASCO23 conerty of the author and ASCO. Permission required for reuse: contact nerr

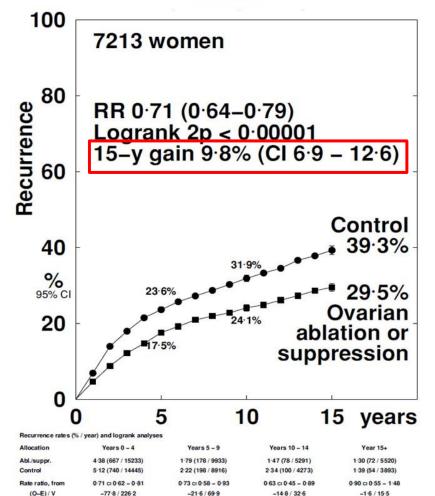
PRESENTED BY: Richard Gray, Emeritus Professor of Medical Statistics. University of Oxford

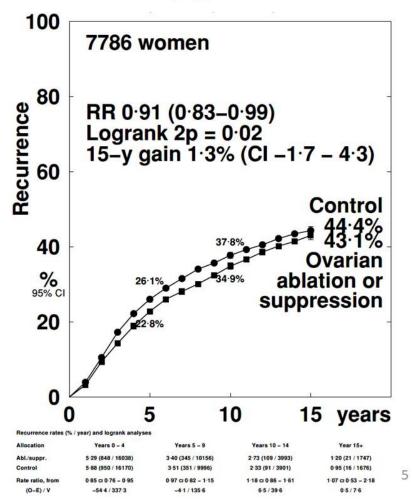
ASCO AMERICAN SI CLINICAL ON WLEDGE CONQUERS

- No chemotherapy: 12 trials (3,934 women) ٠
- Chemotherapy given prior to randomisation ۲ (3 trials)
- Post-randomisation chemotherapy (14 trials: ٠ 7,786)

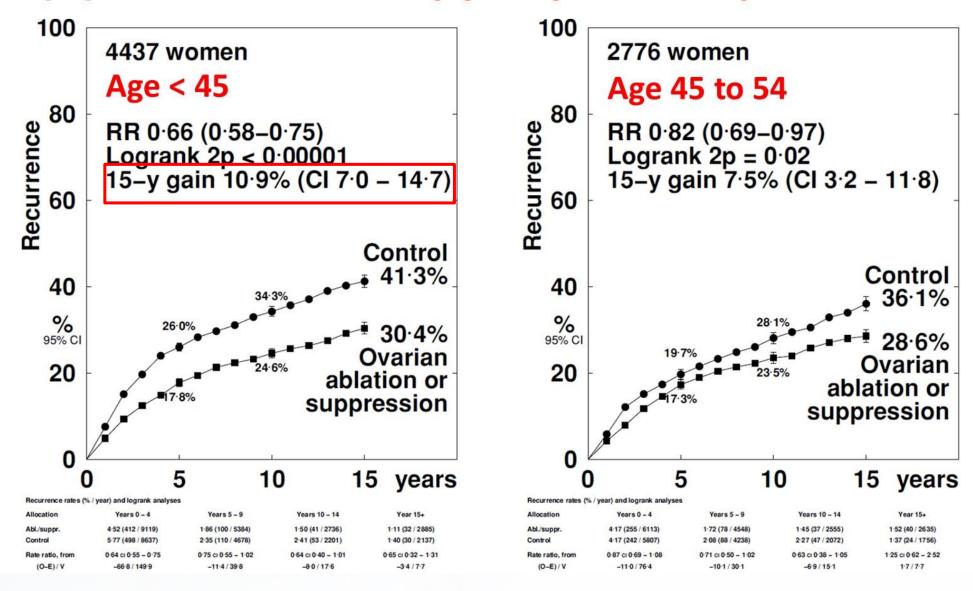
Methods

- Meta-analysis of individual patient data from trials of ovarian ablation (by surgery or irradiation) or ovarian suppression (usually GnRH-agonists) versus not (with all other treatments the same in each group)
- Pre-menopausal women with ER-positive, or unknown ER status, early stage breast cancer
- Primary outcomes: recurrence and cause specific mortality analysed by standard EBCTCG* methods

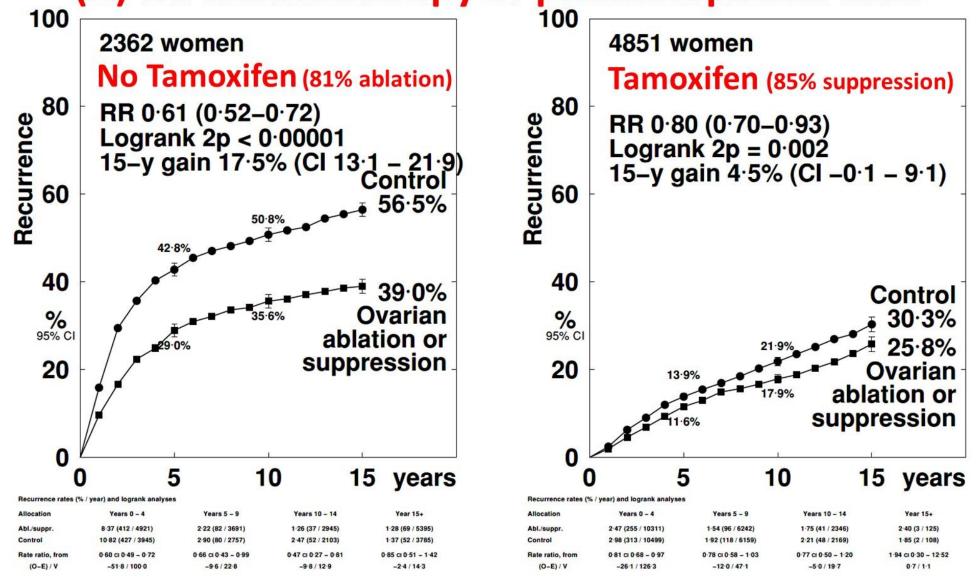

*EBCTCG OUP 1990, Lancet 2011. 2012



Ovarian ablation/suppression vs not: Recurrence


(A) No chemotherapy, or remained premenopausal <u>after</u> chemotherapy

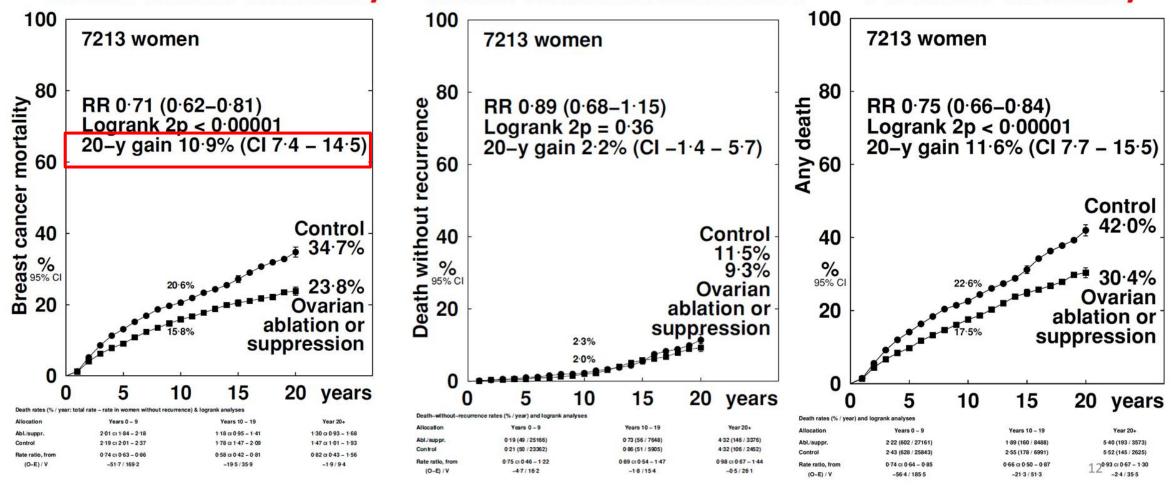
(B) Premenopausal <u>before</u> chemotherapy, uncertain after



Ovarian ablation/suppression vs not: Recurrence (A) No chemotherapy or premenopausal after

11

Ovarian ablation/suppress. vs not: Recurrence by tamoxifen use (A) No chemotherapy or premenopausal after


14

Ovarian ablation/suppression vs not: Mortality (A) No chemotherapy or premenopausal after

Breast cancer mortality

Death without recurrence

All cause mortality

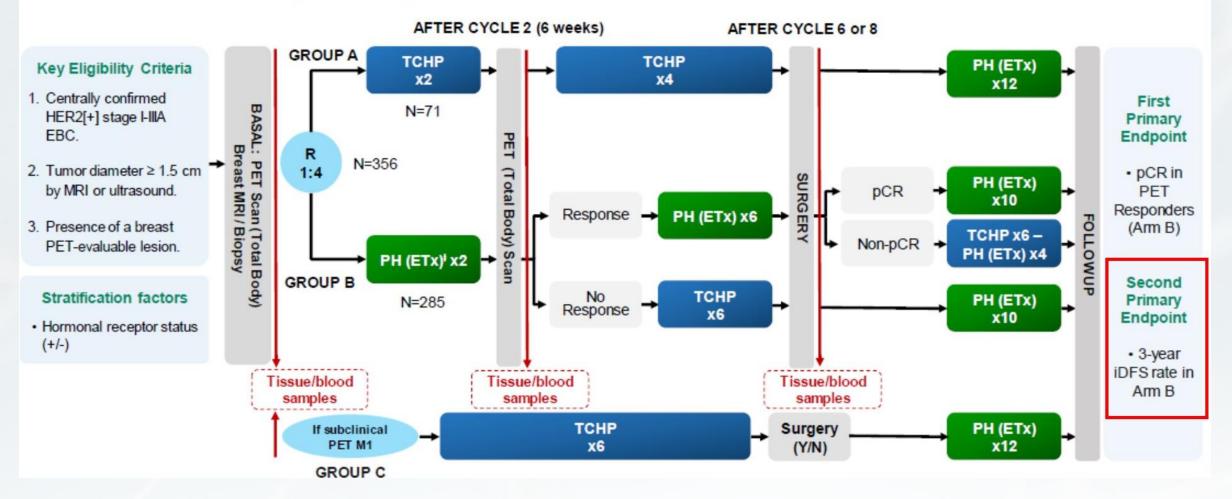
3-year invasive disease-free survival (iDFS) of the strategy-based, randomized phase II PHERGain trial evaluating chemotherapy (CT) de-escalation in human epidermal growth factor receptor 2positive (HER2[+]) early breast cancer (EBC)

Javier Cortés^{1,2,3}, José Manuel Pérez-García^{1,2}, Manuel Ruiz-Borrego⁴, Agostina Stradella⁵, Begoña Bermejo⁶, Santiago Escrivá-de-Romaní⁷, Lourdes Calvo Martínez⁸, Nuria Ribelles⁹, Alfonso Cortés¹⁰, Cinta Albacar¹¹, Marco Colleoni¹², Geraldine Gebhart¹³, Aleix Prat¹⁴, Kerrou Khaldoun¹⁵, Peter Schmid¹⁶, Serena Di Cosimo¹⁷, Crina Popa², Daniel Alcalá-López², Miguel Sampayo-Cordero², Antonio Llombart-Cussac^{2,18}

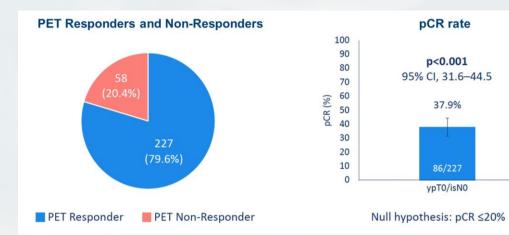
1.) International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain; 2.) Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain and Ridgewood, New Jersey, US; 3.) Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain; 4.) University Hospital Virgen del Rocío, Sevilla, Spain; 5.) Medical Oncology Department, Institut Català D'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain; 6.) Medical Oncology, Hospital Clínico Universitario de Valencia, Biomedical Research Institute INCLIVA, Medicine Department, Universidad de Valencia, Valencia and Oncology Biomedical Research National Network (CIBERONC-ISCIII), Madrid; 7.) Medical Oncology Department, Breast Cancer Group, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; 8.) Hospital Universitario A Coruña, A Coruña, Spain; 9.) UGC Oncología Intercentros, Hospital Universitario Virgen de la Victoria, Institut de Investigaciones Biomédicas de Málaga (IBIMA), Málaga, Spain; 10.) Universital Ramón y Cajal, Madrid, Spain; 11.) Hospital Universitario A Coruña, Institute of Oncology (IRCCS), Milan, Italy; 13.) Institut Jules Bordet–Université Libre de Bruxelles, Brussels, Belgium; 14.) Department of Medical Oncology, Hospital Clinic o Barcelona, Barcelona, Barcelona, Spain; 10.) Universitario and PET Center Department, Sorborne University of Barcelona, Barcelona, Spain; 15.) APHP, Tenon Hospital IUC-UPMC, Nuclear Medicine and PET Center Department, Sorborne University, Paris, France; 16.) Barts Experimental Cancer Medicine Centre, Barts Cancer Institute, Queen Mary University of London, Barts Hospital NHS Trust, London, UK; 17.) Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazional de Tumori, Milano; 18.) Arnau de Vilanova Hospital, Universidad Católica de Valencia, Spain.

2023 ASCO

#ASCO23


PRESENTED BY: Dr. JAVIER CORTÉS MD PhD

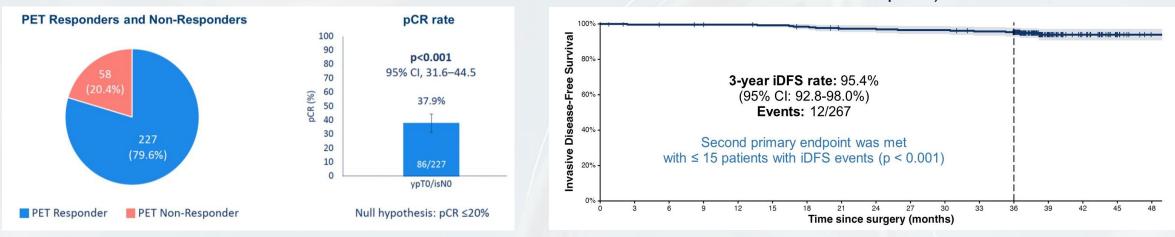
Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.


PHERGain Study Design

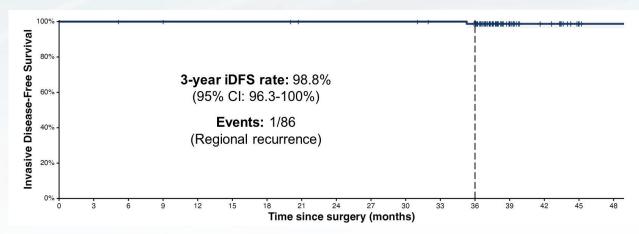
- De-escalation phase II study with a response-adapted strategy
- Patient charact.: 76.8% stage II; 51% cN0; ER+ 67.4%

PHERGain

pCR in PET responders (primary endpoint)



Pérez-García, Lancet Oncol 2021; Javier Cortés, ASCO 2023 #LBA506


PHERGain

pCR in PET responders (primary endpoint)

3-years iDFS in group B N=267 (co-primary endpoint)

3-years iDFS without chemo in PET responders with pCR n=86 (subgroup analysis)

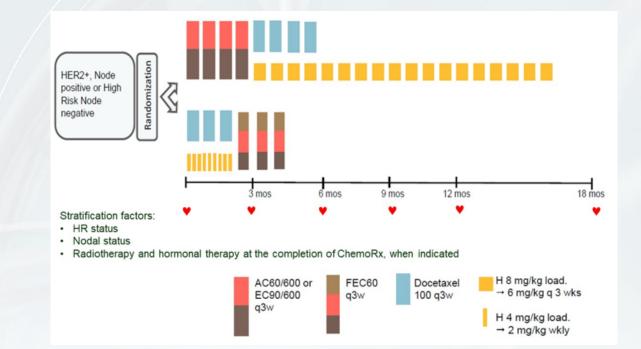
Pérez-García, Lancet Oncol 2021; Javier Cortés, ASCO 2023 #LBA506

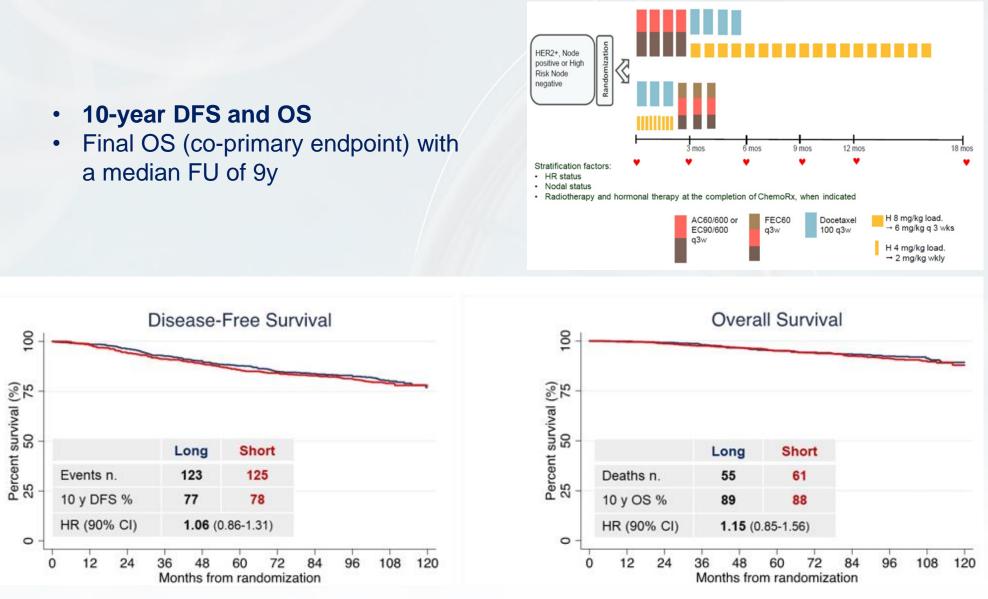
Nine weeks versus one-year trastuzumab for early HER2+ breast cancer: 10-year update of the Short-HER phase III randomised trial

PF Conte, G Bisagni, F Piacentini, S Sarti, S Minichillo, E Anselmi, M Aieta, V Gebbia, A Schirone, A Musolino, O Garrone, A Beano, A Rimanti, F Giotta, A Turletti, MV Dieci, R Vicini, S Balduzzi, R D'Amico, V Guarneri.

S Camillo Hospital IRCCS, Istituto Oncologico Veneto IRCCS, University of Padova on behalf of the ShortHER study team

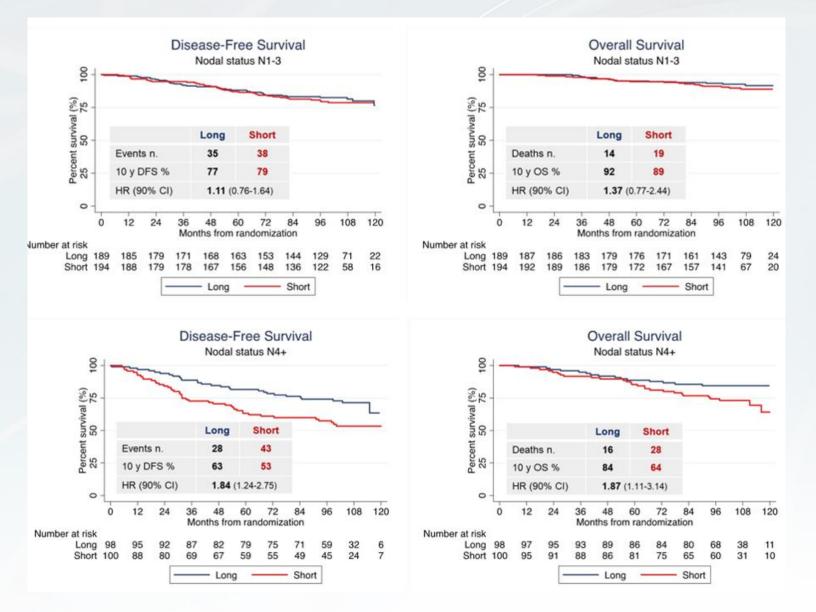
2023 ASCO ANNUAL MEETING


Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.


Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

ShortHER

- 5y DFS: Long Arm 87.5%; Short Arm 85.4%; HR 1.15 (90% CI 0.91-1.46) → Non-inferiority cannot be claimed
- Significant lower cardiac toxicity for the short treatment HR 0.32 (95% CI 0.21-0.50; p<0.0001)



ShortHER

Conte P et al, Ann Oncol 2018 ;Pierfranco Conte, ASCO 2023 #637

ShortHER

Pierfranco Conte, ASCO 2023 #637

Prognosis and Treatment Outcomes for Patients with Stage IA Triple-negative Breast Cancer: **A Population-based Study**

Paolo Tarantino, Julieta Leone, Carlos T. Vallejo, Rachel A. Freedman, Adrienne G. Waks, Olga Martínez-Sáez, Ana Garrido-Castro, Filipa Lynce, Nabihah Tayob, Nancy U. Lin, Sara M. Tolaney and Jose P. Leone.

Population based study stage I TNBC

- N 8,601
- Women with Stage I TNBC
 from SEER
- Diagnosed 2010-2019
- 1ry Obj: BC specific survival
- 2ry Obj: trends & use of chemo over the time

The use of chemo significantly increased over time for pts with T1b and T1c TNBC

Paolo Tarantino, ASCO 2023

Population based study stage I TNBC

Paolo Tarantino, ASCO 2023

Conclusions in ER +/HER2- EBC

- NATALEE has reached its primary end point, and supports RIB + NSAI as a new treatment of choice in stage II-III ER+/HER2- EBC, including pts with node-negative disease (8% grade ≥3 liver-related AEs, and only 20% of pts have already completed 3y RIB)
- In MonarchE, pts ≥65y derive similar benefit (iDFS, DRFS) from adjuvant abema + ET, and showed similar AEs rate, although dose reductions and treatment discontinuations were higher in this group of pts
- Ovarian ablation/suppression Oxford meta-analysis: recurrence and survival benefit in women who received no prior chemotherapy, or who received chemo and remained premenopausal after it. Larger benefit in patients ≤ 45y, and in women who received no tamoxifen

Conclusions in HER2-positive/TN EBC

- The PHERGain study also mets the second primary endpoint with a 3yiDFS of 95.4% in pts in group B. Among CT-free pts, 3y iDFS was 98.8%. This approach identifies ~1/3 of pts who could safely omit CT
- In **ShortHER**: 10y DFS and OS of long vs short duration of adjuvant trastuzumab are similar. However, pts with 4+ nodes and stage III have better DFS and OS with 1-year
- Population-based study in stage I TNBC: chemo significantly improved BCSS in pts with TNBC, but not for pts with T1b TNBC

Muchas gracias por vuestra atención!

Institut Català d'Oncologia (ICO) Hospital Universitari de Bellvitge (HUB)

spernas@iconcologia.net